Thursday, October 30, 2008

Homework due on Friday, October 31

Finish your class work

Finish Type 4 and Type 5
Read for 4 steps
Finish WWW Packet 5
Study for your WWW quiz

The WWWs:


Scholarship Opportunities

Prep for Prep

A Better Chance

About scholarships

Tuesday, October 28, 2008

Factoring a GCF from an Expression

To best understand this lesson, you should make sure you know how to find the GCF of two or more terms. To learn how, see the lesson called Finding a GCF.

3x3 + 27x2 + 9x
To factor out the GCF in an expression like the one above, first find the GCF of all of the expression's terms.

3 (1, 3)
27 (1, 3, 9, 27)
9 (1, 3, 9)

GCF = 3x
Next, write the GCF on the left of a set of parentheses:

3x( )
Next, divide each term from the original expression (3x3+27x2+9x ) by the GCF (3x), then write it in the parenthesis.

3x3 / 3x = x2
27x2 / 3x = 9x
9x / 3x = 3

The next expression we will be factoring is shown below.

36x2 - 64y4
To begin factoring the GCF out of the expression, find the GCF of the two terms.

36 (1, 2, 3, 4, 6, 9, 12, 18, 36)
64 (1, 2, 4, 8, 16, 32, 64)

GCF = 4
As you can see, the two terms to do not have any variables in common, therefore the GCF is simply 4.

Now write 4, the GCF, on the left of a set of parentheses.

4( )
Now divide each term 4, the GCF, and place the result inside the parentheses.

36x2 / 4 = 9x2
-64y4 / 4 = -16y4

4(9x2 - 16y4)
The next page links to various resources and calculators for this lesson.

Homework due on Wednesday, October 29, 2008

-Do your worksheet on factoring the GCF.

ELA: -If your were doing your type 3 in class finish that and do your type 4. If you had done your type 3 for homework already make sure to finish your type 4. Make sure to proof-read your work and pay attention to your FCAs.
-Read for 4 steps.

Announcements: -Remember that your make-up BARD test is on November 2 at 10AM.

P.S: Jehiza did this!...=]

Sunday, October 26, 2008


You all are awesome!

I know the exams this weekend were hard, but you all did them anyway.

I love that determination!

Much love,
Ms. Simmons